Compiler

LEC 1

Book

Compilers: Principles, Techniques,
and Tools is a computer science
textbook by Alfred V. Aho, Monica
S. Lam, Ravi Sethi, and Jeffrey D.
Ullman about compiler
construction.

Compilers

Principles, Techniques, & Tools

(

i Second Edition

ge,
2,
~ Symbax .
“nRirectoy
“elation
%
-

-
RN

£

Alfred V. Aho
Monica S. Lam
Ravi Sethi

Jeffrey D. Ullman

PowerPoint

http://www.bu.edu.eg/staff/ahmedaboalatah14-courses/14779

Benha University staff SeM@ioms:Ahmed Hassan Ahmed Abu El Atta (
Beakin Daliait You are in:Home/Courses/Compilers Back To Courses &~ o
enha Universt . [o
Ass. Lect. Ahmed Hassan Ahmed Abu El Atta :: Course Details: T
Home Compilers .
At ils add course | edit course
| adi Comp"ers @
- @
Eavel Undergraduate !
Courses l o
Publications Last year taught 2018
Inlinks(Competition) =
Course description Not Uploaded 8
Theses '?
-
Reports .
Course password &
Published books @
Workshops / Conferences [/ .
| Course files 29d fies ok
Supervised PhD)
Supervised MSc Course URLS add URLs
| £
Supervised Projects =
Course assignments add assianments z
Education ’
Course Exams add exams | q
L Kill add exams
T &Model Answers | (\-1{
| eul
Academic Positions i
Administrative Positions

Compiler & Interpreter

Compiler is a software computer
program. It reads program in
source language and translates it
into an equivalent program in
target language.

Interpreter executes each
command language line by line.

Input

a=3; .
v_, = Compiler
println (a*b);

Input

a=3;

b_1 — Interpreter
println (a*b);

Output
Mov a,="3"
Mov b,="4°
Lod rl,a
Push Tmp
Mul r1,b
Sto r1,Tmp
Call Write

OutEut
12

source program input — Target Program = output

'

Figure 1.2: Running the target program

Compiler
+ source program —=
target program input = Interpreter |- output

Figure 1.1: A compiler
Figure 1.3: An interpreter

A language-processing system

source program

Preprocessor

modified source program

Compiler

<

target assembly program

Assembler

relocatable machine code

|

) library files
Linker/Loader |=— relocatable object files

target machine code

A compiler can broadly be divided
into two phases based on the way
they compile.

Analysis Phase Synthesis Phase

o Known as the front-end of the compiler, the ° Known as the back-end of
analysis phase of the compiler reads the source the compiler, the synthesis
program, divides it into core parts and then phase generates the target
checks for lexical, grammar and syntax errors. program with the help of
The analysis phase generates an intermediate intermediate source code
representation of the source program and representation and symbol
symbol table, which should be fed to the table.

Synthesis phase as input.

Front-end Back-end

f‘ Analysis N\ /—‘ Synthesis ‘\
Intermediate

Source Code Machine
Code Representation Code

Phases of a Compiler

Input

Source Code

ANALYSIS <

Lexical Analyzer

> Stream of Tokens

U

Syntax Analyzer

— Abstract Syntax Tree

!

Semantic Analyzer

— Parse Tree

{

Intermediate Code Generator

—> Intermediate Code

U

Code Optimizer

s Optimized Code

U

Target Code Generator

__ Target Code
Output

Lexical Analysis

° This phase scans the source code as a stream of characters and
converts it into meaningful lexemes (tokens).

Syntax Analysis

> It takes the token produced by lexical analysis as input and
generates a parse tree Lor syntax tree). In this phase, token
arrangements are checked against the source code grammar.

Semantic Analysis

o Semantic analysis checks whether the parse tree constructed
follows the rules of language. For example, assignment of values is
between compatible data types, and adding string to an integer.
Also, the semantic analyzer keeps track of identifiers, their types
and expressions; whether identifiers are declared before use or
not etc. The semantic analyzer produces an annotated syntax tree
as an output.

Intermediate Code Generation

o After semantic analysis the compiler generates an intermediate
code of the source code for the target machine. It represents a
rogram for some abstract machine. It is in between the high-level
anguage and the machine language.

Input

Source Code

ANALYSIS <

Lexical Analyzer

—> Stream of Tokens

U

Syntax Analyzer

— Abstract Syntax Tree

!

Semantic Analyzer

— Parse Tree

L

Intermediate Code Generator

—> Intermediate Code

v

Code Optimizer

5 Optimized Code

i

Target Code Generator

__ Target Code
Output

A

Code Optimization

o Optimization can be assumed as something that removes
unnecessary code lines, and arranges the sequence of
statements in order to speed up the program execution
without wasting resources (CPU, memory).

Code Generation

° In this phase, the code generator takes the optimized
representation of the intermediate code and maps it to
the target machine language.

Symbol Table

° |t is a data-structure maintained throughout all the phases
of a compiler. All the identifier's names along with their
types are stored here. The symbol table makes it easier for
the compiler to quickly search the identifier record and
retrieve it. The symbol table is also used for scope
management.

1 | position
2 | initial
3 | rate

SYMBOL TABLE

position = initial + rate * 60

|

Lexical Analyzer |

(id, 1) (=) (id,2) (+) (id,3) (x) (60)

1
‘ Syntax Analyzer
_
Gd, 15 “““‘+-HHR
Gd, 2y .
Gid, 37 60
|
Semantic Analyzer
~ 1
Gd, 1y H““‘4-~HHH
(id, 2 .
(id, 3y inttofloat
|
Y 60

Phases of a compiler

v

[Intermediate Code Generator

tl = inttofloat(60)

t2 = id3 * t1
t3 = 1d2 + t2
idl = t3

Code Optimizer

tl = id3 * 60.0
idl = id2 + t1

f

Code Generator

LDF R2, id3

MULF R2, R2, #60.0
LDF R1, id2

ADDF R1, R1, R2
STF idi, Ri

Intermediate Code
Generator

= *
Lexical Analyzer tl=b*c
t2=a+tl

<id, x>, <=>, <id, a>, <+>, x=12

<id, b> <*> <id, c>

Code Optimizer

Syntax Analyzer
S->id=E tl=b*c
ESETIT Parse tree x=a+tl
T->T*F|F
i
[DFRZ, b
Semantic parse tree MULFR2, c
LDFR1,a
ADDF R1,R2
STE x, R1

A model of a compiler front
end

source Lexical | tokens Parser syntax Intﬂ('jngz:iate three-a,ddrfsi
program | Analyzer tree | . erator code
Symbol
Table

