
Compiler
LEC 1

Book
Compilers: Principles, Techniques,
and Tools is a computer science
textbook by Alfred V. Aho, Monica
S. Lam, Ravi Sethi, and Jeffrey D.
Ullman about compiler
construction.

PowerPoint
http://www.bu.edu.eg/staff/ahmedaboalatah14-courses/14779

3

Compiler & Interpreter
Compiler is a software computer
program. It reads program in
source language and translates it
into an equivalent program in
target language.

Interpreter executes each
command language line by line.

A language-processing system

A compiler can broadly be divided
into two phases based on the way
they compile.

Analysis Phase
◦ Known as the front-end of the compiler, the

analysis phase of the compiler reads the source
program, divides it into core parts and then
checks for lexical, grammar and syntax errors.
The analysis phase generates an intermediate
representation of the source program and
symbol table, which should be fed to the
Synthesis phase as input.

Synthesis Phase
◦ Known as the back-end of

the compiler, the synthesis
phase generates the target
program with the help of
intermediate source code
representation and symbol
table.

Phases of a Compiler

Lexical Analysis
◦ This phase scans the source code as a stream of characters and

converts it into meaningful lexemes (tokens).

Syntax Analysis
◦ It takes the token produced by lexical analysis as input and

generates a parse tree (or syntax tree). In this phase, token
arrangements are checked against the source code grammar.

Semantic Analysis
◦ Semantic analysis checks whether the parse tree constructed

follows the rules of language. For example, assignment of values is
between compatible data types, and adding string to an integer.
Also, the semantic analyzer keeps track of identifiers, their types
and expressions; whether identifiers are declared before use or
not etc. The semantic analyzer produces an annotated syntax tree
as an output.

Intermediate Code Generation
◦ After semantic analysis the compiler generates an intermediate

code of the source code for the target machine. It represents a
program for some abstract machine. It is in between the high-level
language and the machine language.

Code Optimization
◦ Optimization can be assumed as something that removes

unnecessary code lines, and arranges the sequence of
statements in order to speed up the program execution
without wasting resources (CPU, memory).

Code Generation
◦ In this phase, the code generator takes the optimized

representation of the intermediate code and maps it to
the target machine language.

Symbol Table
◦ It is a data-structure maintained throughout all the phases

of a compiler. All the identifier's names along with their
types are stored here. The symbol table makes it easier for
the compiler to quickly search the identifier record and
retrieve it. The symbol table is also used for scope
management.

Phases of a compiler

Lexical Analyzer

x = a + b * c /*comment*/

Syntax Analyzer

<id, x>, <=>, <id, a>, <+>,
<id, b> <*>, <id, c>

Semantic Analyzer

Parse tree

S-> id=E
E->E+T|T
T->T*F|F

F->id

Intermediate Code
Generator

Semantic parse tree

t1 = b * c
t2 = a + t1

x = t2

Code Optimizer

t1 = b * c
x = a + t1

Code Generator

LDF R2 , b
MULF R2 , c
LDF R1 , a

ADDF R1,R2
STF x, R1

A model of a compiler front
end

?

